Promedio Móvil Del Metodo Con Tendencia Lineal
Agregar una tendencia o línea de media móvil a un gráfico Se aplica a: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Más. Menos Para mostrar las tendencias de datos o las medias móviles en un gráfico que creó. Puede agregar una línea de tendencia. También puede ampliar una línea de tendencia más allá de sus datos reales para ayudar a predecir los valores futuros. Por ejemplo, la siguiente línea de tendencia lineal pronostica dos trimestres por delante y muestra claramente una tendencia al alza que parece prometedora para las ventas futuras. Puede agregar una línea de tendencia a una gráfica bidimensional que no esté apilada, incluyendo área, barra, columna, línea, stock, dispersión y burbuja. No puede agregar una línea de tendencia a un mapa de 3-D, radar, pastel, superficie o donut apilados. Agregar una línea de tendencia En su gráfico, haga clic en la serie de datos a la que desea agregar una línea de tendencia o una media móvil. La línea de tendencia comenzará en el primer punto de datos de la serie de datos que elija. Marque la casilla Trendline. Para elegir un tipo diferente de línea de tendencia, haga clic en la flecha junto a Trendline. A continuación, haga clic en Exponencial. Pronóstico lineal. O Media móvil de dos periodos. Para obtener más líneas de tendencia, haga clic en Más opciones. Si selecciona Más opciones. Haga clic en la opción que desee en el panel Formato de línea de tendencia en Opciones de línea de tendencia. Si selecciona Polynomial. Introduzca la potencia más alta para la variable independiente en el cuadro Orden. Si selecciona Media móvil. Introduzca el número de períodos que se utilizarán para calcular la media móvil en el cuadro Período. Sugerencia: Una línea de tendencia es más precisa cuando su valor R-cuadrado (un número de 0 a 1 que revela cuán estrechamente los valores estimados para la línea de tendencia corresponden a los datos reales) es igual o cercano a 1. Cuando agrega una línea de tendencia a sus datos , Excel calcula automáticamente su valor R-cuadrado. Puede mostrar este valor en su gráfico, marcando el valor Mostrar cuadrado R en el cuadro de gráfico (panel Formato de línea de tendencia, Opciones de línea de tendencia). Puede obtener más información sobre todas las opciones de la línea de tendencia en las secciones siguientes. Línea de tendencia lineal Utilice este tipo de línea de tendencia para crear una línea recta de mejor ajuste para conjuntos de datos lineales simples. Sus datos son lineales si el patrón en sus puntos de datos se parece a una línea. Una línea de tendencia lineal por lo general muestra que algo está aumentando o disminuyendo a un ritmo constante. Una línea de tendencia lineal utiliza esta ecuación para calcular los mínimos cuadrados aptos para una línea: donde m es la pendiente yb es la intersección. La siguiente línea de tendencia lineal muestra que las ventas de refrigeradores han aumentado constantemente durante un período de 8 años. Observe que el valor de R-cuadrado (un número de 0 a 1 que revela cuán estrechamente los valores estimados para la línea de tendencia corresponden a sus datos reales) es 0.9792, que es un buen ajuste de la línea a los datos. Al mostrar una línea curva mejor ajustada, esta línea de tendencia es útil cuando la tasa de cambio en los datos aumenta o disminuye rápidamente y luego se nivela. Una línea de tendencia logarítmica puede usar valores negativos y positivos. Una línea de tendencia logarítmica utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde c y b son constantes y ln es la función de logaritmo natural. La siguiente línea de tendencia logarítmica muestra el crecimiento poblacional previsto de los animales en un área de espacio fijo, donde la población nivelada como espacio para los animales disminuyó. Tenga en cuenta que el valor R-cuadrado es 0.933, que es un ajuste relativamente bueno de la línea a los datos. Esta línea de tendencia es útil cuando sus datos fluctúan. Por ejemplo, cuando analiza ganancias y pérdidas en un conjunto de datos grande. El orden del polinomio puede determinarse por el número de fluctuaciones en los datos o por el número de curvas (colinas y valles) que aparecen en la curva. Normalmente, una línea de tendencia polinomial de Orden 2 tiene sólo una colina o valle, una Orden 3 tiene una o dos colinas o valles, y una Orden 4 tiene hasta tres colinas o valles. Una línea de tendencia polinomial o curvilínea utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde b son constantes. La siguiente línea de tendencia polinomial de la orden 2 (una colina) muestra la relación entre la velocidad de conducción y el consumo de combustible. Observe que el valor R-cuadrado es 0.979, que es cercano a 1 por lo que las líneas un buen ajuste a los datos. Al mostrar una línea curva, esta línea de tendencia es útil para conjuntos de datos que comparan medidas que aumentan a una velocidad específica. Por ejemplo, la aceleración de un coche de carreras a intervalos de 1 segundo. No puede crear una línea de tendencia de energía si sus datos contienen valores cero o negativos. Una línea de tendencia de potencia usa esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde cyb son constantes. Nota: Esta opción no está disponible cuando los datos incluyen valores negativos o cero. El siguiente gráfico de medidas de distancia muestra la distancia en metros por segundos. La línea de tendencia de potencia demuestra claramente la creciente aceleración. Tenga en cuenta que el valor R-cuadrado es 0.986, que es un ajuste casi perfecto de la línea a los datos. Al mostrar una línea curva, esta línea de tendencia es útil cuando los valores de los datos suben o bajan a tasas constantemente en aumento. No puede crear una línea de tendencia exponencial si sus datos contienen valores cero o negativos. Una línea de tendencia exponencial utiliza esta ecuación para calcular los mínimos cuadrados que se ajustan a los puntos: donde c yb son constantes y e es la base del logaritmo natural. La siguiente línea de tendencia exponencial muestra la cantidad decreciente de carbono 14 en un objeto a medida que envejece. Tenga en cuenta que el valor R-cuadrado es 0,990, lo que significa que la línea se ajusta a los datos casi perfectamente. Tendencia media móvil Esta línea de tendencia evinge las fluctuaciones de los datos para mostrar un patrón o una tendencia más claramente. Una media móvil utiliza un número específico de puntos de datos (establecidos por la opción Período), los promedia y utiliza el valor promedio como un punto en la línea. Por ejemplo, si Período se establece en 2, el promedio de los dos primeros puntos de datos se utiliza como el primer punto de la línea de tendencia del promedio móvil. El promedio de los puntos de datos segundo y tercero se utiliza como segundo punto en la línea de tendencia, etc. Una línea de tendencia de media móvil utiliza esta ecuación: El número de puntos en una línea de tendencia de media móvil es igual al número total de puntos de la serie menos el Número que especifique para el período. En un gráfico de dispersión, la línea de tendencia se basa en el orden de los valores de x en el gráfico. Para obtener un resultado mejor, ordene los valores x antes de agregar un promedio móvil. La siguiente línea de tendencia de media móvil muestra un patrón en el número de viviendas vendidas en un período de 26 semanas. Ver tambiénPeramalan merupakan aktivitas fungsi bisnis yang memperkirakan penjualan dan penggunaan produk sehingga produk-produk itu dapat dibuat dalam kuantitas yang tepat. Peramalan merupakan dugaan terhadap permintaan yang akan datang berdasarkan pada beberapa variabel peramal, seringar datos berksarkan deret waktu historis. Peramalan menggunakan teknik-teknik peramalan yang bersifat formal maupun informal (Gaspersz, 1998). Kegiatan peramalan merupakan bagian integral dari pengambilan keputusan manajemen. Peramalan mengurangi ketergantungan pada hal-hal yang belum pasti (intuitivo). Peramalan, memiliki, sifat, saling, ketergantungan, antar, divisi, atau, bagian. Kesalahan dalam proyeksi penjualan akan mempengaruhi pada ramalan anggaran, pengeluaran operasia, arus kas, persediaan, dan sebagainya. Dua hal pokok yang harus diperhatikan dalam proses peramalan yang akurat dan bermanfaat (Makridakis, 1999): Pengumpulan data yang relevan berupa informasi yang dapat menghasilkan peramalan yang akurat. Pemilihan teknik peramalan yang tepat yang akan memanfaatkan informasi datos yang diperoleh semaksimal mungkin. Terdapat dua pendekatan untuk melakukan peramalan yaitu dengan pendekatan kualitatif dan pendekatan kuantitatif. Metodología peramalan kualitatif digunakan ketika data historis tidak tersedia. Metode peramalan kualitatif adalá metode subyektif (intuitivo). Metode ini didasarkan pada informaasi kualitatif. Dasar informasi ini dapat memprediksi kejadian-kejadian de masa yang akan datang. Keakuratan dari metode ini sangat subjektif (Materi Statistika, UGM). Metode peramalan kuantitatif dapat dibagi menjadi dua tipe, causal dan series de tiempo. Metodo peramalan causal meliputi faktor-faktor yang berhubungan dengan variabel yang diprediksi seperti analisis regresi. Peramalan serie de tiempo merupakan metodo kuantitatif untuk menganalisis datos masa lampau yang telah dikumpulkan secara teratur menggunakan teknik yang tepat. Hasilnya dapat dijadikan acuan untuk peramalan nilai de masa yang akan datang (Makridakis, 1999). Modelo de producto de la marca de fábrica de la fábrica de la impresión de la pared de la pared de la pared de la pared del modelo de la pared del modelo del modelo de la pared de la ventana. Peramalan harus mendasarkan analisisnya datos pada pola yang ada. Empat pola data yang lazim ditemui dalam peramalan (Materi Statistika, UGM): 1. Pola Horizontal Pola ini terjadi bila data de la sekitar-rata-ratanya. Produce yang penjualannya tidak meningkat atau menurun selma waktu tertentu termasuk jenis ini. Struktur datanya dapat digambarkan en el mar. Pola musiman terjadi bila nilai datos dipengaruhi oleh faktor musiman (misalnya kuartal tahun tertentu, bulanan atau hari-hari pada minggu tertentu). Struktur datanya dapat digambarkan en el mar. Pola ini terjadi bila los datos de los flujos de flujos de datos de la jangka panjang seperti yang berhubungan dengan siklus bisnis. Struktur datanya dapat digambarkan sebagai berikut. Pola Tendencia terjadi bila ada kenaikan atau penurunan sekuler jangka panjang dalam datos. Struktur datanya dapat digambarkan sebagai berikut. Pronosticar adalah peramalan atau perkiraan mengenai sesuatu yang belum terjadi. Ramalan yang dilakukan pada umumnya akan berdasarkan datos yang terdapat de masa lampau yang dianalisis dengan mengunakan metode-metode tertentu. Pronóstico diupayakan dibuat dapat meminimumkan pengaruh ketidakpastian tersebut, dengan kata lainbertujuan mendapatkan ramalanyang bisa meminimumkan kesalahan meramal (error de pronóstico) yang biasanya diukur dengan Desviación absoluta media, error absoluto. Dan sebagainya. Peramalan merupakan alat bantu yang sangat penting dalam perencanaan yang efektif dan efisien (Subagyo, 1986). Peramalan permintaan memiliki karakteristik tertentu yang berlaku secara umum. El karakteristik ini harus diperhatikan untuk menilai hasil suatu proses peramalan permintan dan metode peramalan yang digunakan. Karakteristik peramalan yaitu faktor penyebab yang berlaku de masa lalu diasumsikan akan berlaku juga de masa yang akan datang, dan peramalan pernah sempurna, permintaan aktual selalu berbeda dengan permintaan yang diramalkan (Baroto, 2002). Penggunaan berbagai modelo peramalan akan miembro nilai ramalan yang berbeda dan derajat dari galat ramalan (error de pronóstico) yang berbeda pula. Seni dalam melakukan peramalan adalah memilih modelo peramalan terbaik yang mampu mengidentifikasi dan menanggapi pola aktivitas historis dari data. Modelo de modelo peramalan dapat dikelompokan ke dalam dua kelompok utama, yaitu metode kualitatif dan metode kuantitatif. Metode kuantitatif dikelompokkan ke dalam dua kelompok utama, yaitu intrinsik dan ekstrinsik. Metodología kualitatif ditujukan untuk peramalan terhadap produk baru, barbaría de los prosas, barbaría de los prosas, perialidad de los dioses de los ojos, perúba teknologi, atau penyesuaian terhadap ramalan-ramalan berdasarkan metode kuantitatif. Modelo kuantitatif intrinski sering disebut sebagai modelo-modelo deret waktu (modelo de la serie de tiempo). Modelo deret waktu yang poblador dan umum diterapkan dalam peramalan peraltaan adalah rata-rata bergerak (promedios móviles), pemulusan eksponensial (suavizado exponencial), dan proyeksi kecenderungan (tendencia proyección). Model kuantitatif ekstrinsik sering disebut juga sebagai modelo kausal, dan yangumum digunakan adalah modelo regresi (Regression Causal model) (Gaspersz, 1998). 1. Medias móviles de movimiento (WMA) Modelo rata-rata bergerak menggunakan sejumlah datos aktual permintaan yang baru untuk membangkitkan nilai ramalan untuk permintaan di masa yang akan datang. Metodo rata-rata bergerak akan efektif diterapkan apabila permintaan pasar terhadap produk diosumsikan stabil sepanjang waktu. Metodo rata-rata bergerak terdapat dua jenis, rata-rata bergerak tidak berbobot (Promedios Móviles Desnudos) dan rata-rata bobot bergerak (Promedios de Movimiento de Peso). Modelo rata-rata bobot bergerak lebih responsivo terhadap perubahan karena datos dari periodo yang baru biasanya diberi bobot lebih besar. Rumus rata-rata bobot bergerak yaitu sebagai berikut. 2. Suavizado Exponencial Único (SES) Los datos de Pola yang tidak estabilizan a los perubahannya besar dan bergejolak umumnya menggunakan modelo pemulusan eksponensial (Exponential Smoothing Models). Metode Single Exponential Smoothing lebih cocok digunakan untuk meramalkan hal-hal yang fluktuasinya secara acak (tidak teratur). Peramalan menggunakan modelo pemulusan eksponensial rumusnya adalah sebagai berikut. Permasalahan umum yang dihadapi apabila menggunakan modelo pemulusan eksponensial adalah memilih konstanta pemulusan () yang diperirakan tepat. Nilai konstanta pemulusan dipilih de antara 0 de 1 karena berlaku 0 lt lt 1. Datos de Apoyo Pola historis dari data aktual permintaan sangr katen bergejolak atau tidak stabil dari waktu ke waktu, nilai yang dipilih adalah yang mendekati Relativo estabilidad dari waktu ke waktu, yang dipilih adalah yang nilainya mendekati nol (Gaspersz, 1998). 3. Regresi Linier Modelo de analisis Regresi Linier adalah suatu metode populer untuk berbagai macam permasalahan. Menurut Harding (1974) dua variabel yang digunakan, variabel x dan variabel y, diasumsikan memiliki kaitan satu sama lain dan bersifat linier. Rumus perhitungan Regresi Más información sobre la venta. Y hasil peramalan un perpotongan dengan sumbu tegak b menyatakan pendiente atau kemiringan garis regresi Ukuran Akurasi Peramalan Modelo-modelo peramalan yang dilakukan kemudian divalidasi menggunakan sejumlah indikator. Rata-rata penyimpangan absolut (desviación media absoluta), rata-rata kuadrat terkecil (error cuadrático medio), rata-rata persentase kesalahan absolut (error medio de porcentaje absoluto), validasi peramalan (señal de seguimiento), dan Pengujian kestabilan (Rango móvil). 1. Desviación absoluta media (MAD) Metode untuk mengevaluasi metode peramalan menggunakan jumlah dari kesalahan-kesalahan yang absolut. Desviación absoluta media (MAD) mengukur ketepatan ramalan dengan merata-rata kesalahán dugaan (nilai absolut masing-masing kesalahan). MAD berguna ketika mengukur kesalahan ramalan dalam unidad yang sama sebagai deret asli. Nilai MAD dapat dihitung de dengan menggunakan rumus sebegai berikut. 2. Error cuadrático medio (MSE) Error cuadrado medio (MSE). Masing masing kesalahan atau sisa dikuadratkan Kemudian dijumlahkan dan ditambahkan dengan jumlah observasi. Pendekatan ini mengatur kesalahan peramalan yang besar karena kesalahan-kesalahan itu dikuadratkan. Metodo itu menghasilkan kesalahan-kesalahan sedang yang kemungkinan lebih baik untuk kesalahan kecil, tetapi kadang menghasilkan perbedaan yang besar. 3. Error Medio de Porcentaje Absoluto (MAPE) Error Medio de Porcentaje Absoluto (MAPE) dihitung dengan menggunakan kesalahan absolut pada tiap periode dibagi dengan nilai observasi yang nyata untuk periode itu. Kemudian, merata-rata kesalahan persencia absolut tersebut. Pendekatan ini berguna ketika ukuran atau besar variabel ramalan itu penting dalam mengevaluasi ketepatan ramalan. MAPE mengindikasi seberapa besar kesalahan dalam meramal yang dibandingkan dengan nilai nyata. 4. Señal de Seguimiento Señal de Seguimiento. Señal de seguimiento adalah suatu ukuran bagaimana baiknya suatu peramalan memperkirakan nilai-nilai aktual. Señal de Seguimiento de Nilai dapat dihitung dengan menggunakan rumus sebegai berikut. Señal de seguimiento yang positivo menunjukan bahwa nilai aktual permintaan lebih besar daripada ramalan, sedangkan tracking signal yang negatif berarti nilai aktual permintaan lebih kecil daripada ramalan. Señal de seguimiento de error positivo yang sama banyak atau seimbang dengan error negativo. Sealingga pusat dari seguimiento señal mendekati nol. Señal de seguimiento yang telah dihitung dapat dibuat peta kontrol untuk melihat kelayakkan datos de dalam batas kontrol atas dan batas kontrol bawah. 5. Rango de movimiento (MR) Rango de movimiento de Peta. Datos permintaan aktual dibandingkan dengan nilai peramal pada periode yang sama. Peta tersebut dikembangkan ke periode yang akan datang hingga dapat dibandingkan datos peramalan dengan permintaan aktual. Peta Gama móvil digunakan untuk pengujian kestabilan sistema sebab-akibat yang mempengaruhi permintaan. Pérdida del movimiento del peta Moving Range adalah sebagai berikut. Jika ditemukan satu titik yang berada diluir batas kendali pada saat peramalan diverifikasi maka harus diutanan apakah datos harus diabaikan atau mencari peramal baru. Jika ditemukan sebuah titik berada diluir batas kendali maka harus diselidiki penyebabnya. Penemuán itu mungkin saja membutuhkan penyelidikan yang ekstensif. Jika semua titik berada di dalam batas kendali, diáspora bahwa peramalan permintaan yang dihasilkan telah cukup baik. Jika terdapat titik yang berada de luar batas kendali, jelas bahwa peramalan yang didapat kurang baik dan harus direvisi (Gaspersz, 1998). Kegunaan peta Gama de movimiento ialah untuk melakukan verifikasi hasil peramalan menos terdahulu cuadrado. Jika peta Gama de movimiento menunjukkan keadaan diluar kriteria kendali. Hal ini berarti terdapat datos yang tidak berasal dari sistem sebab-akibat yang sama dan harus dibujante maka peramalan pun harus diulangi lagi. Reblogueado esto en ProfesorBisnis y comentado: Peramalan merupakan aktivitas fungsi bisnis yang memperkirakan penjualan dan penggunaan produk sehingga produk-produk itu dapat dibuat dalam kuantitas yang tepat. Peramalan merupakan dugaan terhadap permintaan yang akan datang berdasarkan pada beberapa variabel peramal, seringar datos berksarkan deret waktu historis. Peramalan menggunakan teknik-teknik peramalan yang bersifat formal maupun informal (Gaspersz, 1998). Kegiatan peramalan merupakan bagian integral dari pengambilan keputusan manajemen. Peramalan mengurangi ketergantungan pada hal-hal yang belum pasti (intuitivo). Peramalan, memiliki, sifat, saling, ketergantungan, antar, divisi, atau, bagian. Kesalahan dalam proyeksi penjualan akan mempengaruhi pada ramalan anggaran, pengeluaran operasia, arus kas, persediaan, dan sebagainya. Dua hal pokok yang harus diperhatikan dalam proses peramalan yang akurat dan bermanfaat Maaf mas numpang tanya. Judul skripsi punya ku kan tentang 8220Pergente pergerakan penumpang pada bandara8221 itu kira2 modelo rumus pendekatan yang cocok untuk menghitung potensi pergerakan tersebut yang akurat yang mana ya mas. Trima kasih (mohon d balas yang secepatnya ya mas. Trims) permiso de conducir, fuente de información, menús de tentativa, fungsi, autocorrelación, untuk, penitente, pola, datos, tiempo, serie, apakah musiman, tren, atau stationer, di artikel berikut: datacomlink. blogspot / 2017/12 / data - mining-identifikasi-pola-data-time. html yang ingin saya tanyakan, apakah ada teknik lain untuk mencari pola datos serie temporal selain fungsi autocorrelation ya pak terima kasih mas sy mau tanya kalau peramalan ketersediaan bahán baku ke produsen menggunakan metode apasedangkan peramalan ketersediaan Produk ke konsumen menggunakan metode apaterimakasih Predicción del hasal de Kalau nya bernilai negatif, gimana mas ditamba lagi dari semua metode eksponensial baik yang simple, holt, brown dan damped nilai MAE dan MAPEnya besar sekali diatas 200. Solusinya masMoving modelos de suavización media y exponencial Como primer paso Al trasladarse más allá de los modelos medios, los modelos de caminata aleatoria y los modelos de tendencias lineales, los patrones no estacionales y las tendencias pueden extrapolarse usando un modelo de media móvil o de suavizado. La suposición básica detrás de los modelos de promedio y suavizado es que la serie temporal es localmente estacionaria con una media que varía lentamente. Por lo tanto, tomamos un promedio móvil (local) para estimar el valor actual de la media y luego usarlo como pronóstico para el futuro cercano. Esto puede considerarse como un compromiso entre el modelo medio y el modelo aleatorio-paseo-sin-deriva. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. Una media móvil se denomina a menudo una versión quotomoldeada de la serie original porque el promedio de corto plazo tiene el efecto de suavizar los golpes en la serie original. Al ajustar el grado de suavizado (el ancho de la media móvil), podemos esperar encontrar algún tipo de equilibrio óptimo entre el rendimiento de la media y los modelos de caminata aleatoria. El tipo más simple de modelo de promediación es el. Promedio móvil simple (igualmente ponderado): El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual al promedio simple de las observaciones m más recientes: (Aquí y en otro lugar usaré el símbolo 8220Y-hat8221 para permanecer Para un pronóstico de la serie de tiempo Y hecho a la fecha más temprana posible posible por un modelo dado). Este promedio se centra en el período t (m1) / 2, lo que implica que la estimación de la media local tiende a quedar rezagada detrás del Valor real de la media local de aproximadamente (m1) / 2 periodos. Por lo tanto, decimos que la edad media de los datos en el promedio móvil simple es (m1) / 2 en relación con el período para el cual se calcula el pronóstico: es la cantidad de tiempo por el cual los pronósticos tenderán a rezagarse detrás de los puntos de inflexión en el datos. Por ejemplo, si está promediando los últimos 5 valores, las previsiones serán de aproximadamente 3 períodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de caminata aleatoria (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo SMA es equivalente al modelo medio. Como con cualquier parámetro de un modelo de pronóstico, es habitual ajustar el valor de k para obtener el mejor valor de los datos, es decir, los errores de predicción más pequeños en promedio. He aquí un ejemplo de una serie que parece presentar fluctuaciones aleatorias alrededor de una media de variación lenta. En primer lugar, vamos a tratar de encajar con un modelo de caminata al azar, que es equivalente a una media móvil simple de un término: El modelo de caminata aleatoria responde muy rápidamente a los cambios en la serie, pero al hacerlo, recoge gran parte del quotnoisequot en el Los datos (las fluctuaciones aleatorias), así como el quotsignalquot (la media local). Si en lugar de eso intentamos una media móvil simple de 5 términos, obtendremos un conjunto de previsiones más suaves: El promedio móvil simple a 5 terminos produce errores significativamente menores que el modelo de caminata aleatoria en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de modo que tiende a quedar a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, parece haber ocurrido una recesión en el período 21, pero las previsiones no giran hasta varios periodos más tarde). Obsérvese que los pronósticos a largo plazo del modelo SMA son una línea recta horizontal, al igual que en la caminata aleatoria modelo. Así, el modelo SMA asume que no hay tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de caminata aleatoria son simplemente iguales al último valor observado, las previsiones del modelo SMA son iguales a un promedio ponderado de valores recientes. Los límites de confianza calculados por Statgraphics para los pronósticos a largo plazo de la media móvil simple no se amplían a medida que aumenta el horizonte de pronóstico. Esto obviamente no es correcto Desafortunadamente, no hay una teoría estadística subyacente que nos diga cómo los intervalos de confianza deberían ampliarse para este modelo. Sin embargo, no es demasiado difícil calcular estimaciones empíricas de los límites de confianza para las previsiones a más largo plazo. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo SMA se utilizaría para pronosticar dos pasos adelante, tres pasos adelante, etc. dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de los errores en cada horizonte de pronóstico y, a continuación, construir intervalos de confianza para pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar apropiada. Si intentamos una media móvil sencilla de 9 términos, obtendremos pronósticos aún más suaves y más de un efecto rezagado: La edad promedio es ahora de 5 períodos ((91) / 2). Si tomamos una media móvil de 19 términos, la edad promedio aumenta a 10: Obsérvese que, de hecho, las previsiones están ahora rezagadas detrás de los puntos de inflexión en aproximadamente 10 períodos. Qué cantidad de suavizado es la mejor para esta serie Aquí hay una tabla que compara sus estadísticas de error, incluyendo también un promedio de 3 términos: El modelo C, la media móvil de 5 términos, produce el valor más bajo de RMSE por un pequeño margen sobre los 3 A término y 9 promedios, y sus otras estadísticas son casi idénticas. Por lo tanto, entre los modelos con estadísticas de error muy similares, podemos elegir si preferiríamos un poco más de capacidad de respuesta o un poco más de suavidad en las previsiones. El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable de que trata las últimas k observaciones por igual e ignora por completo todas las observaciones precedentes. Intuitivamente, los datos pasados deben ser descontados de una manera más gradual - por ejemplo, la observación más reciente debería tener un poco más de peso que la segunda más reciente, y la segunda más reciente debería tener un poco más de peso que la tercera más reciente, y pronto. El modelo de suavizado exponencial simple (SES) lo logra. Sea 945 una constante quotsmoothingquot (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que represente el nivel actual (es decir, el valor medio local) de la serie, tal como se estimó a partir de los datos hasta el presente. El valor de L en el tiempo t se calcula recursivamente a partir de su propio valor anterior como este: Así, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde 945 controla la proximidad del valor interpolado al valor más reciente observación. El pronóstico para el siguiente período es simplemente el valor suavizado actual: Equivalentemente, podemos expresar el próximo pronóstico directamente en términos de previsiones anteriores y observaciones previas, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la predicción es una interpolación entre la previsión anterior y la observación anterior: En la segunda versión, la siguiente previsión se obtiene ajustando la previsión anterior en la dirección del error anterior por una cantidad fraccionada de 945. es el error hecho en Tiempo t En la tercera versión, el pronóstico es una media móvil exponencialmente ponderada (es decir, descontada) con el factor de descuento 1-945: La versión de interpolación de la fórmula de pronóstico es la más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en un Célula única y contiene referencias de celdas que apuntan a la previsión anterior, la observación anterior y la celda donde se almacena el valor de 945. Tenga en cuenta que si 945 1, el modelo SES es equivalente a un modelo de caminata aleatoria (sin crecimiento). Si 945 0, el modelo SES es equivalente al modelo medio, asumiendo que el primer valor suavizado se establece igual a la media. La edad promedio de los datos en el pronóstico de suavización exponencial simple es de 1/945 en relación con el período para el cual se calcula la predicción. (Esto no se supone que sea obvio, pero se puede demostrar fácilmente mediante la evaluación de una serie infinita.) Por lo tanto, el pronóstico promedio móvil simple tiende a quedar rezagado detrás de puntos de inflexión en aproximadamente 1/945 períodos. Por ejemplo, cuando 945 0.5 el retraso es 2 períodos cuando 945 0.2 el retraso es 5 períodos cuando 945 0.1 el retraso es 10 períodos, y así sucesivamente. Para una edad promedio dada (es decir, la cantidad de retraso), el simple suavizado exponencial (SES) pronosticado es algo superior a la predicción del promedio móvil simple (SMA) porque coloca relativamente más peso en la observación más reciente - ie. Es un poco más sensible a los cambios ocurridos en el pasado reciente. Por ejemplo, un modelo SMA con 9 términos y un modelo SES con 945 0.2 tienen una edad promedio de 5 para los datos de sus pronósticos, pero el modelo SES pone más peso en los 3 últimos valores que el modelo SMA y en el modelo SMA. Otra ventaja importante del modelo SES sobre el modelo SMA es que el modelo SES utiliza un parámetro de suavizado que es continuamente variable, por lo que se puede optimizar fácilmente Utilizando un algoritmo quotsolverquot para minimizar el error cuadrático medio. El valor óptimo de 945 en el modelo SES de esta serie resulta ser 0.2961, como se muestra aquí: La edad promedio de los datos de esta previsión es de 1 / 0,2961 3,4 períodos, que es similar a la de un movimiento simple de 6 términos promedio. Los pronósticos a largo plazo del modelo SES son una línea recta horizontal. Como en el modelo SMA y el modelo de caminata aleatoria sin crecimiento. Sin embargo, tenga en cuenta que los intervalos de confianza calculados por Statgraphics ahora divergen de manera razonable y que son sustancialmente más estrechos que los intervalos de confianza para el modelo de caminata aleatoria. El modelo SES asume que la serie es algo más predecible que el modelo de caminata aleatoria. Un modelo SES es en realidad un caso especial de un modelo ARIMA. Por lo que la teoría estadística de los modelos ARIMA proporciona una base sólida para el cálculo de los intervalos de confianza para el modelo SES. En particular, un modelo SES es un modelo ARIMA con una diferencia no estacional, un término MA (1) y ningún término constante. Conocido también como modelo quotARIMA (0,1,1) sin constantequot. El coeficiente MA (1) en el modelo ARIMA corresponde a la cantidad 1-945 en el modelo SES. Por ejemplo, si se ajusta un modelo ARIMA (0,1,1) sin constante a la serie analizada aquí, el coeficiente MA estimado (1) resulta ser 0.7029, que es casi exactamente un menos 0.2961. Es posible añadir la suposición de una tendencia lineal constante no nula a un modelo SES. Para ello, basta con especificar un modelo ARIMA con una diferencia no estacional y un término MA (1) con una constante, es decir, un modelo ARIMA (0,1,1) con constante. Las previsiones a largo plazo tendrán entonces una tendencia que es igual a la tendencia media observada durante todo el período de estimación. No puede hacerlo junto con el ajuste estacional, ya que las opciones de ajuste estacional están deshabilitadas cuando el tipo de modelo está ajustado a ARIMA. Sin embargo, puede agregar una tendencia exponencial a largo plazo constante a un modelo de suavizado exponencial simple (con o sin ajuste estacional) utilizando la opción de ajuste de inflación en el procedimiento de Pronóstico. La tasa apropiada de inflación (crecimiento porcentual) por período puede estimarse como el coeficiente de pendiente en un modelo de tendencia lineal ajustado a los datos en conjunción con una transformación de logaritmo natural o puede basarse en otra información independiente sobre las perspectivas de crecimiento a largo plazo . (Regreso al inicio de la página.) Browns Linear (es decir, doble) Suavizado exponencial Los modelos SMA y SES suponen que no hay ninguna tendencia de ningún tipo en los datos (que normalmente está bien o al menos no es demasiado malo para 1- Avance anticipado cuando los datos son relativamente ruidosos), y se pueden modificar para incorporar una tendencia lineal constante como se muestra arriba. ¿Qué pasa con las tendencias a corto plazo? Si una serie muestra una tasa de crecimiento variable o un patrón cíclico que se destaca claramente contra el ruido, y si hay una necesidad de pronosticar más de un período, la estimación de una tendencia local también podría ser un problema. El modelo de suavizado exponencial simple puede ser generalizado para obtener un modelo lineal de suavizado exponencial (LES) que calcula las estimaciones locales de nivel y tendencia. El modelo de tendencia más simple que varía en función del tiempo es el modelo lineal de suavizado exponencial de Browns, el cual utiliza dos series suavizadas diferentes que están centradas en diferentes puntos en el tiempo. La fórmula de predicción se basa en una extrapolación de una línea a través de los dos centros. (Una versión más sofisticada de este modelo, Holt8217s, se discute a continuación). La forma algebraica del modelo de suavizado exponencial lineal de Brown8217s, como la del modelo de suavizado exponencial simple, puede expresarse en varias formas diferentes pero equivalentes. La forma estándar de este modelo se expresa usualmente de la siguiente manera: Sea S la serie de suavizado simple obtenida aplicando el suavizado exponencial simple a la serie Y. Es decir, el valor de S en el periodo t está dado por: (Recuérdese que, Exponencial, esto sería la previsión para Y en el período t1). Entonces, vamos a Squot denotar la serie doblemente suavizada obtenida aplicando el suavizado exponencial simple (usando el mismo 945) a la serie S: Finalmente, la previsión para Y tk. Para cualquier kgt1, viene dado por: Esto produce e 1 0 (es decir, trucar un poco y dejar que el primer pronóstico sea igual a la primera observación real), y e 2 Y 2 8211 Y 1. Después de lo cual las previsiones se generan usando la ecuación anterior. Esto produce los mismos valores ajustados que la fórmula basada en S y S si estos últimos se iniciaron usando S 1 S 1 Y 1. Esta versión del modelo se utiliza en la página siguiente que ilustra una combinación de suavizado exponencial con ajuste estacional. Holt8217s Linear Exponential Smoothing Brown8217s El modelo LES calcula las estimaciones locales de nivel y tendencia al suavizar los datos recientes, pero el hecho de que lo haga con un solo parámetro de suavizado impone una restricción en los patrones de datos que puede encajar: el nivel y la tendencia No se les permite variar a tasas independientes. El modelo LES de Holt8217s aborda este problema incluyendo dos constantes de suavizado, una para el nivel y otra para la tendencia. En cualquier momento t, como en el modelo Brown8217s, existe una estimación L t del nivel local y una estimación T t de la tendencia local. Aquí se calculan recursivamente a partir del valor de Y observado en el instante t y de las estimaciones previas del nivel y de la tendencia por dos ecuaciones que les aplican el suavizado exponencial separadamente. Si el nivel estimado y la tendencia en el tiempo t-1 son L t82091 y T t-1. Respectivamente, entonces la previsión de Y tshy que habría sido hecha en el tiempo t-1 es igual a L t-1 T t-1. Cuando se observa el valor real, la estimación actualizada del nivel se calcula recursivamente interpolando entre Y tshy y su pronóstico, L t-1 T t-1, utilizando pesos de 945 y 1-945. El cambio en el nivel estimado, Es decir L t 8209 L t82091. Puede interpretarse como una medida ruidosa de la tendencia en el tiempo t. La estimación actualizada de la tendencia se calcula recursivamente mediante la interpolación entre L t 8209 L t82091 y la estimación anterior de la tendencia, T t-1. Utilizando los pesos de 946 y 1-946: La interpretación de la constante de suavizado de tendencia 946 es análoga a la de la constante de suavizado de nivel 945. Los modelos con valores pequeños de 946 asumen que la tendencia cambia muy lentamente con el tiempo, mientras que los modelos con 946 más grandes suponen que está cambiando más rápidamente. Un modelo con una gran 946 cree que el futuro lejano es muy incierto, porque los errores en la estimación de la tendencia son muy importantes cuando se pronostica más de un período por delante. Las constantes de suavizado 945 y 946 se pueden estimar de la manera habitual minimizando el error cuadrático medio de las previsiones de 1 paso adelante. Cuando esto se hace en Statgraphics, las estimaciones resultan ser 945 0,3048 y 946 0,008. El valor muy pequeño de 946 significa que el modelo supone muy poco cambio en la tendencia de un período al siguiente, por lo que básicamente este modelo está tratando de estimar una tendencia a largo plazo. Por analogía con la noción de la edad media de los datos que se utilizan para estimar el nivel local de la serie, la edad media de los datos que se utilizan para estimar la tendencia local es proporcional a 1/946, aunque no exactamente igual a eso. En este caso, resulta ser 1 / 0.006 125. Esto no es un número muy preciso en la medida en que la precisión de la estimación de 946 es realmente de 3 decimales, pero es del mismo orden general de magnitud que el tamaño de la muestra de 100 , Por lo que este modelo está promediando bastante historia en la estimación de la tendencia. La gráfica de pronóstico siguiente muestra que el modelo LES calcula una tendencia local ligeramente mayor al final de la serie que la tendencia constante estimada en el modelo SEStrend. Además, el valor estimado de 945 es casi idéntico al obtenido ajustando el modelo SES con o sin tendencia, por lo que este es casi el mismo modelo. Ahora, ¿se ven como pronósticos razonables para un modelo que se supone que está estimando una tendencia local? Si observa esta gráfica, parece que la tendencia local se ha vuelto hacia abajo al final de la serie. Lo que ha ocurrido Los parámetros de este modelo Se han estimado minimizando el error al cuadrado de las previsiones de un paso adelante, y no las previsiones a largo plazo, en cuyo caso la tendencia no hace mucha diferencia. Si todo lo que usted está mirando son errores de un paso adelante, no está viendo la imagen más grande de las tendencias sobre (digamos) 10 o 20 períodos. Con el fin de obtener este modelo más en sintonía con la extrapolación de nuestro ojo de los datos, podemos ajustar manualmente la tendencia de suavizado constante de modo que utiliza una base más corta para la estimación de tendencia. Por ejemplo, si elegimos establecer 946 0.1, la edad promedio de los datos utilizados para estimar la tendencia local es de 10 períodos, lo que significa que estamos promediando la tendencia en los últimos 20 períodos aproximadamente. Here8217s lo que el pronóstico gráfico parece si fijamos 946 0.1 mientras que mantener 945 0.3. Esto parece intuitivamente razonable para esta serie, aunque probablemente sea peligroso extrapolar esta tendencia en más de 10 periodos en el futuro. ¿Qué pasa con las estadísticas de errores? Aquí hay una comparación de modelos para los dos modelos mostrados arriba, así como tres modelos SES. El valor óptimo de 945 para el modelo SES es de aproximadamente 0,3, pero se obtienen resultados similares (con un poco más o menos de capacidad de respuesta, respectivamente) con 0,5 y 0,2. (A) Holts lineal exp. Alisamiento con alfa 0.3048 y beta 0.008 (B) Holts linear exp. Alisamiento con alfa 0.3 y beta 0.1 (C) Suavizado exponencial simple con alfa 0.5 (D) Alisamiento exponencial simple con alfa 0.3 (E) Suavizado exponencial simple con alfa 0.2 Sus estadísticas son casi idénticas, por lo que realmente no podemos hacer la elección sobre la base De errores de pronóstico de un paso adelante en la muestra de datos. Tenemos que recurrir a otras consideraciones. Si creemos firmemente que tiene sentido basar la estimación de tendencia actual en lo que ha ocurrido durante los últimos 20 períodos, podemos hacer un caso para el modelo LES con 945 0.3 y 946 0.1. Si queremos ser agnósticos acerca de si hay una tendencia local, entonces uno de los modelos SES podría ser más fácil de explicar y también daría más pronósticos intermedios para los próximos 5 o 10 períodos. (Volver al principio de la página.) Qué tipo de tendencia-extrapolación es la mejor: horizontal o lineal La evidencia empírica sugiere que, si los datos ya han sido ajustados (si es necesario) para la inflación, puede ser imprudente extrapolar lineal a corto plazo Tendencias en el futuro. Las tendencias evidentes hoy en día pueden desacelerarse en el futuro debido a diversas causas, como la obsolescencia de los productos, el aumento de la competencia y las caídas o repuntes cíclicos en una industria. Por esta razón, el suavizado exponencial simple a menudo realiza mejor fuera de la muestra de lo que de otra manera podría esperarse, a pesar de su extrapolación horizontal de tendencia horizontal. Las modificaciones de la tendencia amortiguada del modelo de suavizado exponencial lineal también se usan a menudo en la práctica para introducir una nota de conservadurismo en sus proyecciones de tendencia. El modelo LES con tendencia amortiguada se puede implementar como un caso especial de un modelo ARIMA, en particular, un modelo ARIMA (1,1,2). Es posible calcular intervalos de confianza alrededor de los pronósticos a largo plazo producidos por modelos de suavizado exponencial, considerando como casos especiales de modelos ARIMA. El ancho de los intervalos de confianza depende de (i) el error RMS del modelo, (ii) el tipo de suavizado (simple o lineal) (iii) el valor (S) de la (s) constante (s) de suavizado y (iv) el número de periodos por delante que está pronosticando. En general, los intervalos se extienden más rápido a medida que el 945 se hace más grande en el modelo SES y se extienden mucho más rápido cuando se usa lineal en lugar de simple suavizado. Este tema se discute más adelante en la sección de modelos de ARIMA de las notas. (Volver al inicio de la página.)
Comments
Post a Comment